Error Bounds for High-resolution Quantization with Rényi-α-entropy Constraints

نویسنده

  • W. KREITMEIER
چکیده

We consider the problem of optimal quantization with norm exponent r > 0 for Borel probability measures on R under constrained Rényi-αentropy of the quantizers. If the bound on the entropy becomes large, then sharp asymptotics for the optimal quantization error are well-known in the special cases α = 0 (memory-constrained quantization) and α = 1 (Shannon-entropy-constrained quantization). In this paper we determine sharp asymptotics for the optimal quantization error under large entropy bound with entropy parameter α ∈ [1 + r/d,∞]. For α ∈ [0, 1 + r/d[ we specify the asymptotical order of the optimal quantization error under large entropy bound. The optimal quantization error is decreasing exponentially fast with the entropy bound and the exact rate is determined for all α ∈ [0,∞].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal quantization for the one-dimensional uniform distribution with Rényi-α-entropy constraints

We establish the optimal quantization problem for probabilities under constrained Rényi-α-entropy of the quantizers. We determine the optimal quantizers and the optimal quan-tization error of one-dimensional uniform distributions including the known special cases α = 0 (restricted codebook size) and α = 1 (restricted Shannon entropy).

متن کامل

Low-Delay Distributed Source Coding: Bounds and Performance of Practical Codes

The performance of distributed source coding methods based on scalar quantization followed by scalar entropy coding is investigated. For a fixed quantizer, the problem is converted to that of zero-error entropy coding for bipartite graphs with a special structure. It is then experimentally shown that for bipartite graphs corresponding to jointly Gaussian sources and high-resolution uniform quan...

متن کامل

High-resolution scalar quantization with Rényi entropy constraint

We consider optimal scalar quantization with rth power distortion and constrained Rényi entropy of order α. For sources with absolutely continuous distributions the high rate asymptotics of the quantizer distortion has long been known for α = 0 (fixed-rate quantization) and α = 1 (entropyconstrained quantization). These results have recently been extended to quantization with Rényi entropy cons...

متن کامل

A Ziv - Zakai - Rényi Lower Bound on Distortion at High Resolution

We follow a method introduced by Ziv and Zakai for finding ‘informational’ lower bounds on delay constrained joint source-channel coding. Their method uses the data processing theorem for generalized measures of information. We introduce the use of Rényi’s information of order α in their framework, and use high-resolution approximations to find its rate distortion function for a source that pos...

متن کامل

Rate-Distortion Bounds for High-Resolution Vector Quantization via Gibbs's Inequality

Gibbs’s inequality states that the differential entropy of a random variable with probability density function (pdf) f is less than or equal to its cross entropy with any other pdf g defined on the same alphabet, i.e., h(X) ≤ −E[log g(X)]. Using this inequality with a cleverly chosen g, we derive a lower bound on the smallest output entropy that can be achieved by quantizing a d-dimensional sou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009